MLS.SION STEAMPOSSIBLE- 2025-2026 Science Fair Information Packet 4th-8th Grades September 3, 2025 Dear RSPA Parents and Students, Welcome to the Science Fair! In addition to learning how to think critically and developing positive attitudes about themselves and their work, students gain the following benefits from participating in the science fair: | $\ \square$ Reinforcement of grade-level science, literacy, and math skills | | | |---|----|----| | □ Fostering curiosity, awareness, and creativity | | 1) | | □ Increased scientific knowledge | MO | X | | □ Learning research techniques | | 1 | | ☐ Growth in the ability to work independently | | | | □ Having fun with science! | | 7 | Science Fair projects are produced at home, and while parental support is essential, the following guidelines should be used when considering how much help to provide students. - 2nd and 3rd graders should be able to do at least 50% of the project alone. - 4th 8th graders should be doing almost the entire science project by themselves. There are two links on the school website. Please ensure you choose the correct grade level for your scholar (rhodesschool.org) for Science Fair packets this year. The packet will be a guide to help your student prepare a project and exhibit for the school Science Fair. ### The packet includes: - Types of Science Projects: You may use one of these ideas or choose one of your own - Schedule of Assignments (MUST be turned in on time, as these are steps to ensure the work is being done with fidelity) - Project Ideas (only a guide) - Definitions & Science Fair Ideas - Oral Presentation Rules (each student will present during class) - Assignment forms, Resource pages, & Rubrics The first step is to help your child decide what science project he/she wants to do. Please review this packet carefully with your child, then choose a project your child is interested in and that you deem appropriate for his/her grade and ability level. Need ideas or help? The packet lists several ideas and suggestions, and you may also contact your child's Science teacher with questions or help with project ideas. Once you choose your project, fill out the project plan form and turn it in to your teacher by **September 16, 2025.** Use the due date schedule/checklist (pg.6) to help you follow the process and meet deadlines. Each deadline signifies that an assignment needs to be returned to the teacher and will be taken for a grade. Please send a written request or email to your student's homeroom teacher if you need a hard copy of the Science Fair packet. The Science Fair packet can be found on the school website at **rhodesschool.org**. **PLEASE SIGN AND RETURN:** Good luck & have fun! Student Signature # STUDENT NAME: TEACHER: GRADE: Topic Choice: I have reviewed RSPA's Science Fair information and all due dates with my child and understand that a final project MUST be submitted on November 6, 2025 (REQUIRED). I further acknowledge that my child understands his/her responsibility to complete much of the work for his/her project at home, according to the enclosed timeline. I also understand that a rubric will be used to evaluate my child's completed project. Parent/Guardian Signature Date Due: Tuesday, September 16, 2025 Date ### TYPES OF ACCEPTABLE PROJECTS - 1. **Experiment or Investigation:** This is the most common type of project, where you use the <u>scientific method</u> to propose and test a hypothesis/ask a testable question. After you accept or reject the hypothesis, you draw conclusions about what you observed. Example: Which type of lotion is softer, Vaseline or Suave? Hypothesis: Suave is softer. Conduct an experiment to test the hypothesis and report on the findings. - 2. **Research:** In this project, you collect information about a topic and present your findings. Example: A research project can be an excellent project if you use the data to answer a question. An example would be polling people to ask about their beliefs on religious freedom in America, then drawing conclusions about what the results mean or how they may relate to some of our current laws or laws that should be in place. -Must include charts or graphs. - 3. Model (2nd 3rd GRADES ONLY): This type of project involves building a model to illustrate a concept or principle. Example: The <u>vinegar & baking soda volcano</u>, used to demonstrate the reaction between the various chemicals used in the project. Report on observations and findings. 4. Invention (4th - 8th GRADES ONLY) - information below is quoted from http://school.discoveryeducation.com/sciencefaircentral/Getting-Started/Inventions.html ### Invention is really about engineering a solution. For students, this can be: - A problem they want to solve - A process or physical design they want to improve ### In designing and engineering a solution, students: - Find a local problem or something that needs to be improved - Research it to find out what others know - Suggest a solution and explain why it should work - Design the solution and the method for testing to see if it works - Build and test the solution - Collect data to be sure your solution made a change - Make sense of the data how do you know it worked, or didn't work? - Develop a report and share it with your fellow scientists Note that sometimes the invention is a model or a sample set. Once the model or design shows that the solution can work, it can be applied to the real world. Examples are: improving the aerodynamic design of a model car; controlling the spread of a pest; improving building design to better conserve energy. As with investigations, the key to defining the project is to pose the right question. Students can ask themselves, "What bothers me?" "What have I heard other people complaining about?" Is it something that could be fixed or improved?" ## **Examples of Invention Projects** | GENERAL SCIENCE TOPICS | PROBLEM EXAMPLES | DESIGN QUESTION | |-------------------------|---|---| | Gravity and Mass | My backpack is too heavy to carry. | How can I make it easier to get it to school? | | Behavior | Our dog barks too much. | How can I get him to quiet down without hurting him? | | Visibility | When I'm in a crowd, I can't see around me. | What can I do or use to help
me see more? | | Stabilizing Temperature | My juice gets warm in my
lunchbox. | How can I keep it cold? | | Human Accessibility | | How can I make it so they can
turn their bedroom room lights
on or off? | # **Schedule of Assignments** | Assignment | |---| | *Science Fair packet available online;
parents will review with students and
choose a topic. | | *Topic choice is due | | Assignment #1 is due: Problem/Question & Hypothesis (science grade) | | Assignment #2 is due: Materials & Procedures (science grade) | | Assignment #3 is due: Data, Results & Conclusion (science & math grade). Assignment #4 is due: Written Report (science & ELA grade) Include the Problem/Question, hypothesis, materials, procedures, data, results and conclusion. What things went well/not so well, what would you do differently if given another opportunity? Add in real world connections/ how did/will this investigation or experiment make life better | | Assignment #5 is due: Display Board | | Final Project-Oral Presentation | | Science Far Judging | | Science Fair Night - Winners Announced | | | | | # Science Fair Topic Examples (Students may select one of these topics or select their own) | Does the color of a material affect its absorption of heat? | |--| | Does the length of a vibrating object affect water? | | Do watches keep time the same? | | Do ants like cheese or sugar better? | | Can you tell what something is just by touching it? | | 1How long will it take a drop of food dye to color a glass of still water? | | Do bigger seeds produce bigger plants? | | Does a ball roll farther on grass or dirt? | | Can things be identified by just their smell? | | What brand of eraser is most effective in removing pencil marks? | | Which metal conducts heat best? | | Which way does the wind blow most frequently? | | What type of soil filters water best? | | Can you see better if you limit the light that gets to your eye? | | What type of oil has the greatest density? | | Does warm water freeze faster than cool water? | | Does temperature affect the growth of plants? | | Does anyone in my class have the same fingerprints? | | | | Which rock best resists cracking from | What brand of tape holds the most weight? | |---|---| | the impact of weight? | | | What brand of tape holds the most weight? | How does temperature affect the height | | | that a dropped ball bounces? | | Which plants and vegetables make the best dye? | Which color of light causes green beans to grow best? | |---|---| | What type of line carries sound waves best? | Can same-type balloons withstand the same amount of pressure? | | What materials provide the best insulation? | What are the effects of chlorine on plant growth? | | Do wheels reduce friction? | What is the soil in my schoolyard made of? | | Can plants grow from leaves? | What conditions cause iron nails to rust faster? | | What common substances prevent the rusting of iron nails? | What are the effects of caffeine on the germination and growth of bacteria? | | What is the effect of various antiseptics on the growth of bacteria? | What conditions affect the strength of adhesives? | | How does the number of coils affect the strength of a magnetic field? | Which lubricant best reduces friction? | | Does the shape of the container affect the freezing rate of water? | How does the PH of soil affect the rate of seed germination? | | Heat transfer: Which is the best conductor? | What effect do temperature and water composition have on crystal growth? | | Which type of wild flower grows best under artificial light? | Is there a relationship between phases of the moon and our weather? | | Does the carbonation in soda cause the soda cans to corrode? | | # Science Fair Ideas - 1. **Society for Science:** See sample fair projects, look through other students' examples, and see the steps involved in judging projects. https://student.societyforscience.org/ - 2. **Science Buddies:** Use the topic selection wizard to help you figure out what science projects interest you most. Once you have a topic, get help with doing research, setting up the experiments, and completing them. http://www.sciencebuddies.org/ - 3. **Science Fair Central:** Includes cool project ideas, a science fair handbook, reviews of students' experiments, and more from Discovery Channel School. http://school.discovery.com/sciencefaircentral/ - 4. **Science Fair Project Resource Guide:** Samples, ideas, magazines, resources, and more. Includes a list of sites that explain the Scientific Method. http://www.ipl.org/div/kidspace/projectguide/ - 5. **Scientific Method:** Describes the five steps of the Scientific Method that are helpful when creating a science fair project. Includes examples of wording and sample projects to explain certain steps. http://school.discoveryeducation.com/sciencefaircentral/Getting-Started/Investigation.html - 6. **Super Science Fair Projects:** Guide to projects, topics, experiments, and tips for successfully completing a science project, including the six steps of the Scientific Method. http://www.super-science-fair-projects.com/ - 7. **Cool Science Fair Project**: Suggestions and ideas on science projects. http://www.cool-science-projects.com/Science-Fair-Project-Ideas.html # **Definitions** - 1. <u>Background Information/Research:</u> Any essential information (e.g., definitions) that may be necessary to begin your investigation or to develop your hypothesis. - 2. <u>Bibliography:</u> A list of references consulted during your project. - 3. <u>Conclusion</u>: A statement telling what was learned as a result of the investigation. - 4. <u>Further Research</u>: Ideas for further investigation. - 5. <u>Hypothesis:</u> A scientific guess about the relationship between the manipulated variable and the responding variable. The hypothesis provides guidance for the student (the investigator) about what data to collect. - 6. <u>Manipulated Variable:</u> A variable that is intentionally changed in a situation (e.g., different amounts of water or brand of paper towel used). - 7. <u>Materials:</u> Any items needed to conduct the investigation. - 8. <u>Procedures:</u> A complete list of steps followed during an investigation. - 9. <u>Recording Data:</u> A complete record of all observations and measurements gathered during an investigation. Keep notes, charts, ideas, etc., in a journal of your project. - 10. <u>Responding Variable:</u> A variable that is possibly changed as a result of the manipulated variable (e.g., height of plant growth or winning the game every time). - 11. Results: A statement telling the outcome of the investigation. - 12. <u>Statement of the Problem (Question)</u>: A simple question that can be answered through an investigation. - 13. <u>Variable:</u> A condition that varies or changes in a situation. # **Oral Presentation** A lot of kids are scared of speaking in public or to a teacher/judge. Just imagine they are a fellow scientist who just wants you to share what you learned. Relax, smile, and have fun. Remember, you are the expert, and you had fun doing the project. But if you are a little nervous, we have listed some things that you need to do during the presentation. ### Helpful Hints: - Look sharp, feel sharp, and you will be sharp. Dress nice that day, be polite, and speak clearly. You will show that you have confidence. Don't forget to look at your audience. - Introduce yourself. Point to the title of your display. Tell your audience why you chose to study this. - State the problem that you studied (your question). Tell them about your hypothesis (what you thought might happen). - Talk about what you learned while researching your topic. - Talk about the sources (books, websites, and interviews) that helped you understand your topic. - Tell about your project and explain the steps you took to conduct your experiment. Be sure to mention all the materials involved and point out the pictures that you may have taken. - If it applies, be sure to show them that you tested your experiment at least 3 times. - Show them all of the cool graphic organizers that you made, like your tables and charts. Remember to point out the labeled parts of your graph or table to show that you know what it represents. - Be sure to explain what your data means. Make sure you can read your graphs and tables. Let them know if you were surprised by the results, or if you know what would happen because you studied about it. - Make sure you sound like an expert on your topic. Always use the appropriate vocabulary especially by using words from the Scientific Method, like: Problem, Hypothesis, Procedure, Results, and Conclusion.